461 research outputs found

    Photoluminescence quantum yield of transition metal dichalcogenide

    Get PDF
    Photoluminescence quantum yield (PLQY) is an important characteristic of luminescent materials. Photoluminescence (PL) is light emitted by a luminescent material after absorbing photons. Quantum yield (QY) is defined as the number of times a specific event occurs per photon absorbed by the system, Transition metal dichalcogenide (TMD) is a kind of material with the type of MX2. TMD is a semiconductor material, but also a two-dimensional material. Single-layer TMD has the properties of large exciton and trion binding energy, which are appropriate in the development of optoelectronics. PLQY is a good method to measure the optoelectronic properties of TMD material

    Temporal similarity metrics for latent network reconstruction: The role of time-lag decay

    Full text link
    When investigating the spreading of a piece of information or the diffusion of an innovation, we often lack information on the underlying propagation network. Reconstructing the hidden propagation paths based on the observed diffusion process is a challenging problem which has recently attracted attention from diverse research fields. To address this reconstruction problem, based on static similarity metrics commonly used in the link prediction literature, we introduce new node-node temporal similarity metrics. The new metrics take as input the time-series of multiple independent spreading processes, based on the hypothesis that two nodes are more likely to be connected if they were often infected at similar points in time. This hypothesis is implemented by introducing a time-lag function which penalizes distant infection times. We find that the choice of this time-lag strongly affects the metrics' reconstruction accuracy, depending on the network's clustering coefficient and we provide an extensive comparative analysis of static and temporal similarity metrics for network reconstruction. Our findings shed new light on the notion of similarity between pairs of nodes in complex networks

    IA-OPD : an optimized orthogonal pulse design scheme for waveform division multiple access UWB systems

    Get PDF
    A new design scheme of orthogonal pulses is proposed for waveform division multiple access ultra-wideband (WDMA-UWB) systems. In order to achieve WDMA and to improve user capacity, the proposed method, termed as interference alignment based orthogonal pulse design (IA-OPD), employs combined orthogonal wavelet functions in the pulse design. The combination coefficients are optimized by using interference alignment. Due to the reciprocity between transmitted and local template signals, the iterative process based on maximum signal to interference plus noise ratio (Max-SINR) criterion can be used to solve the optimization problem in interference alignment. Numerical results demonstrate that the optimized orthogonal pulses provide excellent performances in terms of multiple access interference (MAI) suppression, user capacity and near-far resistance without using any multiuser detection (MUD) techniques. Thus, the IA-OPD scheme can be used to efficiently design a large number of orthogonal pulses for multiuser WDMA-UWB systems with low computational complexity and simple transceiver structure

    EDGE++: Improved Training and Sampling of EDGE

    Full text link
    Recently developed deep neural models like NetGAN, CELL, and Variational Graph Autoencoders have made progress but face limitations in replicating key graph statistics on generating large graphs. Diffusion-based methods have emerged as promising alternatives, however, most of them present challenges in computational efficiency and generative performance. EDGE is effective at modeling large networks, but its current denoising approach can be inefficient, often leading to wasted computational resources and potential mismatches in its generation process. In this paper, we propose enhancements to the EDGE model to address these issues. Specifically, we introduce a degree-specific noise schedule that optimizes the number of active nodes at each timestep, significantly reducing memory consumption. Additionally, we present an improved sampling scheme that fine-tunes the generative process, allowing for better control over the similarity between the synthesized and the true network. Our experimental results demonstrate that the proposed modifications not only improve the efficiency but also enhance the accuracy of the generated graphs, offering a robust and scalable solution for graph generation tasks

    Experimental and numerical modeling of deformation-cracking mechanics of 3D-printed rock samples with single fracture

    Get PDF
    The analysis of mechanical response and deformation-cracking behavior contributes to the high-efficiency extraction of geo-energy and long-term safety of underground engineering structures. Compared to natural cores, the mechanical properties of 3D-printed samples made from quartz sand as raw material are relatively homogeneous, and can be used for quantitative studies on the influence of natural defects on the mechanical properties of rocks. In this work, 3D-printed samples with single fractures of different crack angles, lengths and widths were fabricated and used for uniaxial compression tests. Adopting the digital image correlation method, the stress-strain distribution during uniaxial compression tests were visualized, and the influence of prefabricated fracture characteristics (dip angle, length, and width) on the deformation-failure process were studied. An extended finite element method subroutine for ABAQUS® software was modeled and used for the uniaxial compression simulation, which was validated by experiments. Then, the influence of mechanical parameters (Young’s modulus, Poisson’s ratio, cohesion, and internal friction angle) on the deformation-cracking mechanics were simulated and studied. The results indicate that, compared to the intact sample, fractures reduce the sample strength. With the extension of fracture length and width, or the decline of fracture angle, both the peak strain and strength of the 3D-printed samples decrease. The splitting tensile failure, or shear failure, or both were determined for the 3D-printed samples with different fracture angles. For the same axial strain, the extension length of the new crack increases linearly with rising Young’s modulus and decreases linearly with increasing Poisson’s ratio. The initial strain of new cracks decreases linearly with increasing Young’s modulus, while little variations are found in samples with different Poisson’s ratio. For the same axial displacement load, the peak stress increases linearly with growing internal friction angle and cohesion.Cited as: Song, R., Tian, J., Wu, M., Liu, J. Experimental and numerical modeling of deformation-cracking mechanics of 3D-printed rock samples with single fracture. Advances in Geo-Energy Research, 2023, 8(2): 126-135. https://doi.org/10.46690/ager.2023.05.0

    A joint multi user detection scheme for UWB sensor networks using waveform division multiple access

    Get PDF
    A joint multiuser detection (MUD) scheme for wireless sensor networks (WSNs) is proposed to suppress multiple access interference (MAI) caused by a large number of sensor nodes. In WSNs, waveform division multiple access ultra-wideband (WDMA-UWB) technology is well-suited for robust communications. Multiple sensor nodes are allowed to transmit modulated signals by sharing the same time periods and frequency bands using orthogonal pulse waveforms. This paper employs a mapping function based on the optimal multiuser detection (OMD) to map the received bits into the mapping space where error bits can be distinguished. In order to revise error bits caused by MAI, the proposed joint MUD scheme combines the mapping function with suboptimal algorithms. Numerical results demonstrate that the proposed MUD scheme provides good performances in terms of suppressing MAI and resisting near-far effect with low computational complexity
    • …
    corecore